
Parallel programming tools and Portable, flexible and
parallel I/O (HDF5)

Cecilia Jarne

cecilia.jarne@unq.edu.ar

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 1 / 44

mailto:cecilia.jarne@unq.edu.ar
mailto:cecilia.jarne@unq.edu.ar


High Performance Computing

Summary:

The basic ideas.

Parallel architectures.

Software Implementations.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 2 / 44

mailto:cecilia.jarne@unq.edu.ar


What is High Performance Computing?

HPC = High Performance Computing = Efficiency.

HPC: I care how quickly I get an answer.

HPC: High productivity.

HPC: Old Software + New Hardware.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 3 / 44

mailto:cecilia.jarne@unq.edu.ar


What is High Performance Computing?

¿Where?

Smartphone

Desktop/laptop

Clúster

Supercomputer

In the cloud

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 4 / 44

mailto:cecilia.jarne@unq.edu.ar


High Performance Computing

¿When?

Take advantage of the hardware we have.

Decide what hardware to buy.

Obtain results from extreme simulations.

What we resign?
Friendly interfaces, reusable and portable software ...

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 5 / 44

mailto:cecilia.jarne@unq.edu.ar


HPC on a desktop

Processors (no time to lose).
Connections (key).
OS choose how it connects.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 6 / 44

mailto:cecilia.jarne@unq.edu.ar


HPC in a Cluster

Computers (no time to waste).
Connections (key).
Master node chooses how to
connect.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 7 / 44

mailto:cecilia.jarne@unq.edu.ar


Architecture of a cluster

Symmetric MultProcessors

CPU CPUCPUCPU

BUS INTERCONECT

MAIN MEMORY

NonUniform Memory Access

CPU CPUCPUCPU

BUS INTERCONECT

MAIN 
MEMORY

MAIN 
MEMORY

MAIN 
MEMORY

MAIN 
MEMORY

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 8 / 44

mailto:cecilia.jarne@unq.edu.ar


Shared memory

Advantages:

Easy for the programmer.
Sharing data is faster and more
direct.

Disadvantages:

Poor scalability.
Synchronization by the
programmer.
More difficult and expensive to
design and produce machines
with shared memory as the
number of processors increases.

CPU CPUCPUCPU

BUS INTERCONECT

MAIN MEMORY

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 9 / 44

mailto:cecilia.jarne@unq.edu.ar


Distributed memory

Advantages

Memory scale with the number
of processors.
Each processor quickly accesses
its own local memory without
interference and without
overhead.
Obtener hardware off-the-shelf
with a reasonable performance-

Disadvantages

Data communication between
processes by the programmer.
Complicated adapting existing
code.

CPU CPUCPUCPU

BUS INTERCONECT

MAIN 
MEMORY

MAIN 
MEMORY

MAIN 
MEMORY

MAIN 
MEMORY

Access time to the data is not
uniform (and varies a lot!)

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 10 / 44

mailto:cecilia.jarne@unq.edu.ar


Architecture of a cluster

How does it impact the design of the software?

Massive parallelism.

Increasing complexity.

Less efficiency for old software.

Little predictability.

We have to think in the hardware when coding!

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 11 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

GPU (graphics processing unit)

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 12 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

Schematically:

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 13 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

Main idea is:

less ctrl less caché more ALUs
↓

Massive parallelism
(to feed so many ALUs)

↓
Data parallelism

(enough to hide latency)

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 14 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

Schematically:

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 15 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

Why does it accelerate?

Very scalable design.

A lot of bandwidth.

Many low frequency processors.

Ideal for massive data
processing.

It does not always accelerate

Hyou have to pass the
information to the board.

Difficult to synchronize the
processors.

Serial execution VERY slow.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 16 / 44

mailto:cecilia.jarne@unq.edu.ar


Accelerators

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 17 / 44

mailto:cecilia.jarne@unq.edu.ar


Hybrid architectures

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 18 / 44

mailto:cecilia.jarne@unq.edu.ar


HPC in a Supercomputer

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 19 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel application performance

What does the execution time of a parallel program depend on?

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 20 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel application performance

It depends on:

Complexity and dimension of the problem.

Number of tasks used.

Characteristics of the processing elements (hardware, heterogeneity,
non-dedication).

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 21 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel application performance

Depends on the location of processes and data (inter and intra-processor
communication, communication channel).

Due to non-determinism in execution, minimizing it is a design objective.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 22 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel application performance

Speed Up

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 23 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel application performance

Amdhal’s Law

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 24 / 44

mailto:cecilia.jarne@unq.edu.ar


Serial model

Traditionally, software has been written for serial computation:

A problem is broken into a discrete series of instructions.

Instructions are executed sequentially one after another.

Executed on a single processor.

Only one instruction may execute at any moment in time.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 25 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel Model

Parallel computing is the simultaneous use of multiple compute
resources to solve a computational problem

A problem is broken into discrete parts that can be solved
concurrently.

Each part is further broken down to a series of instructions.

Instructions from each part execute simultaneously on different
processors.

An overall control/coordination mechanism is employed.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 26 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model

The computational problem should be able to:

Be broken apart into discrete pieces of work that can be solved
simultaneously.

Execute multiple program instructions at any moment in time.

Be solved in less time with multiple compute resources than with a
single compute resource.

The compute resources are typically:

A single computer with multiple processors/cores.

An arbitrary number of such computers connected by a network.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 27 / 44

mailto:cecilia.jarne@unq.edu.ar


Von Neumann

Four main components:

Memory.

Control Unit.

Arithmetic Logic Unit.

Input/Output.

Read/write, random access memory is used to store both program instructions and data.

Program instructions are coded data which tell the computer to do something.

Data is simply information to be used by the program.

Control unit fetches instructions/data from memory, decodes the instructions and then sequentially coordinates
operations to accomplish the programmed task.

Arithmetic Unit performs basic arithmetic operations.

Input/Output is the interface to the human operator.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 28 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model: Concepts and Terminology

Flynn’s Classical Taxonomy

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 29 / 44

mailto:cecilia.jarne@unq.edu.ar


Serial model

Single Instruction, Single Data (SISD):

A serial (non-parallel) computer.

Single Instruction: Only one instruction by the CPU
during any one clock cycle.

Single Data: Only one data stream is being used
during any one clock cycle.

This is the oldest type of computer.

Examples: older generation mainframes,

minicomputers, workstations and single

processor/core PCs.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 30 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model: SIMD

Single Instruction, Multiple Data (SIMD): A type of parallel computer

Single Instruction: All processing units execute the
same instruction at any given clock cycle.

Multiple Data: Each processing unit can operate on a
different data element.

Best suited for specialized problems characterized by
a high degree of regularity, such as graphics/image
processing.

Synchronous (lockstep) and deterministic execution.

Two varieties: Processor Arrays and Vector Pipelines.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 31 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model: MISD

Multiple Instruction, Single Data (MISD) other type of parallel computer:

Multiple Instruction: Each processing unit operates on
the data independently via separate instruction
streams.

Single Data: A single data stream is fed into multiple
processing units.

Few (if any) actual examples of this class of parallel
computer have ever existed.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 32 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model

Multiple Instruction, Multiple Data (MIMD):

Multiple Instruction: Every processor may be
executing a different instruction stream.

Multiple Data: Every processor may be working with a
different data stream.

Execution can be synchronous or asynchronous,
deterministic or non-deterministic.

Currently, the most common type of parallel computer
- most modern supercomputers fall into this category.

Examples: most current supercomputers, networked
parallel computer clusters and ”grids”,
multi-processor SMP computers, multi-core PCs.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 33 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model: Concepts and Terminology

Node:
A standalone çomputer in a box”. Usually comprised of multiple
CPUs/processors/cores, memory, network interfaces, etc.

CPU / Socket / Processor / Core:
This varies, depending upon who you talk to. In the past, a CPU (Central
Processing Unit) was a singular execution component for a computer. Then,
multiple CPUs were incorporated into a node. Then, individual CPUs were
subdivided into multiple çores”, each being a unique execution unit.

Task:
Typically a program or program-like set of instructions executed by a processor. A
parallel program consists of multiple tasks running on multiple processors.

Pipelining:
Breaking a task into steps performed by different processor units, with inputs
streaming through.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 34 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model:Concepts and Terminology

Shared Memory:
Computer architecture where all processors have direct access to common physical
memory. In a programming sense a model where parallel tasks all have the same
”picture.of memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists.

Distributed Memory:
In hardware, refers to network based memory access for physical memory that is
not common. As a programming model, tasks can only logically ”see”local
machine memory and must use communications to access memory on other
machines where other tasks are executing.

Communications:
Parallel tasks typically need to exchange data. There are several ways this can be
accomplished.

Granularity:

In parallel computing, granularity is a qualitative measure of the ratio of

computation to communication.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 35 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model

Embarrassingly Parallel:
Solving many similar, but independent tasks simultaneously; little to no need for
coordination between the tasks.

Scalability:
Refers to a parallel system’s (hardware and/or software) ability to demonstrate a
proportionate increase in parallel speedup with the addition of more resources.
Factors that contribute to scalability include:

• Hardware - particularly memory-cpu bandwidths and network communication
properties.

• Application algorithm.
• Parallel overhead related.
• Characteristics of your specific application.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 36 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel Computer Memory Architectures

Shared Memory:

Uniform Memory Access (UMA):

Identical processors.

Equal access and access times to
memory.

Non-Uniform Memory Access
(NUMA):

Not all processors have equal access
time to all memories.

Memory access across link is slower.

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 37 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel Programming Models

There are several parallel programming models in common use:

Shared Memory (without threads).

Threads.

Distributed Memory / Message Passing.

Data Parallel.

Hybrid.

Single Program Multiple Data (SPMD).

Multiple Program Multiple Data (MPMD).

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 38 / 44

mailto:cecilia.jarne@unq.edu.ar


Parallel model: Threads Model

This programming model is a type of shared memory programming. From
a programming perspective, threads implementations commonly comprise:

A library of subroutines that are called from within parallel source
code.

A set of compiler directives embedded in either serial or parallel
source code. In both cases, the programmer is responsible for
determining the parallelism (although compilers can sometimes help).

An interesting library is: Multiprocessing is a package that supports
spawning processes using an API similar to the threading module.
https://stackoverflow.com/questions/2846653/how-to-use-threading-in-python

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 39 / 44

https://stackoverflow.com/questions/2846653/how-to-use-threading-in-python
mailto:cecilia.jarne@unq.edu.ar


Parallel model: Distributed Memory / Message Passing
Model

This model demonstrates the following characteristics:

A set of tasks that use their own local memory during computation.
(Multiple tasks can reside on the same physical machine and/or across an arbitrary
number of machines.)

Tasks exchange data through communications by sending and receiving messages.

Data transfer usually requires cooperative operations to be performed by each
process.
(For example, a send operation must have a matching receive operation.)

Implementations: Message Passing Interface (MPI)

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 40 / 44

mailto:cecilia.jarne@unq.edu.ar


HDF5 and h5py

The h5py package is a Pythonic interface HDF5 binary data format.
https://www.h5py.org/

We can save different kinds of information.

We can save our trained neural network models and reload.

To read the files:

1 import h5py

2 filename = ’file.hdf5’

3 f = h5py.File(filename, ’r’)

To save into this files:
1 #!/usr/bin/env python

2 import h5py

3

4 # Create random data

5 import numpy as np

6 data_matrix = np.random.uniform(-1, 1, size=(10,

3))

7

8 # Write data to HDF5

9 data_file = h5py.File("file.hdf5", "w")

10 data_file.create_dataset("group_name", data=

data_matrix)

11 data_file.close()

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 41 / 44

https://www.h5py.org/
mailto:cecilia.jarne@unq.edu.ar


HDF5 and h5py

Alternatives

JSON: Nice for writing human-readable data; VERY commonly used
(read & write)

CSV: Super simple format (read & write).

pickle: A Python serialization format (read & write).

MessagePack (Python package): More compact representation (read
& write).

HDF5 (Python package): Nice for matrices (read & write).

XML: exists too *sigh* (read & write).

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 42 / 44

mailto:cecilia.jarne@unq.edu.ar


HDF5

For your application, the following might be important:

Support by other programming languages.

Reading / writing performance.

Compactness (file size).

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 43 / 44

mailto:cecilia.jarne@unq.edu.ar


Credits:

Blaise Barney, Lawrence Livermore National Laboratory
https://computing.llnl.gov/tutorials/parallel_comp/

ICTP Introductory School on Parallel Programming and Parallel
Architecture for High-Performance Computing:
http://indico.ictp.it/event/7659/overview

WTPC 2017, Graciela Molina (FACET -UNT).
https://wtpc.github.io/clases/2017/11_MPI.pdf

MPI4PY:
https://www.howtoforge.com/tutorial/distributed-parallel-programming-python-mpi4py/

http://mpi-forum.org/docs/

Cecilia Jarne Basics on Scientific Python cecilia.jarne@unq.edu.ar 44 / 44

https://computing.llnl.gov/tutorials/parallel_comp/
http://indico.ictp.it/event/7659/overview
https://wtpc.github.io/clases/2017/11_MPI.pdf
https://www.howtoforge.com/tutorial/distributed-parallel-programming-python-mpi4py/
http://mpi-forum.org/docs/
mailto:cecilia.jarne@unq.edu.ar

	Introduction

