
Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Programming unitary operators in a
linear-algebraic typed lambda-calculus

Benôıt Valiron, Alejandro D́ıaz-Caro
Mauricio Guillermo & Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

September 6th, 2018 – 6ta jornada LoCIC — Buenos Aires

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Aim of the work

Present the semantics of a linear algebraic lambda-calculus based on
a realizability model that captures a notion of unitarity (`2-norm)

lambda-calculus = functional programming (see next slides)

algebraic = linear combinations of terms
(to represent superpositions of values / superpositions of programs)

linear = all functions are linear by construction

Main novelty: The calculus is designed from a realizability model
(a notion coming from logic, Kleene 1945)

A language to represent:

classical values, classical programs
superposition of values, superposition of programs
classical programs computing superposition of values
superposition of programs computing superposition of values

A semantics for quantum programming languages (Quipper)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Plan

1 Introduction

2 The lambda-calculus

3 Adding linear combinations

4 A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Plan

1 Introduction

2 The lambda-calculus

3 Adding linear combinations

4 A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The pure λ-calculus (1/2)

Introduced by Alonzo Church (1903–1995) in the 1930s
... to solve Hilbert’s Entscheidungsproblem (Decision problem)

Minimal functional programming language. Only:

3 syntactic constructs (variable, λ-abstraction, application)
1 computation rule (β-reduction)

Actually, the first programming language ever! ...
... if we do not count Charles Babbage’s (partial) attempt

Same computation strength as Turing machines
Turing (1912-1954), who had invented his abstract machines
independently, became Church’s PhD student in Princeton

The λ-calculus is now the core of all functional programming
languages: Lisp, Scheme, Erlang, OCaml, Haskell, F#, etc.

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The pure λ-calculus (2/2)

Terms of the pure λ-calculus (notation: s, t, u, etc.)

s, t, u ::= x
| λx . s
| t u

(variable)
(λ-abstraction)

(application)

Computation rule: (λx . s) u �� s[x := u] (β-reduction)

Examples:

(λx . x) y �� y

(λx . x) (λx . x) �� λx . x

(λx . x x) (λx . x) �� (λx . x) (λx . x) �� λx . x

(λx . x x) (λx . x x) �� (λx . x x) (λx . x x) �� · · ·
(λz . z z) (λf . λx . f (f (f x))) ��
λf . λx . f (f x))))))))))))))))))))

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Adding types

To avoid undesirable phenomena (self-application, non termination, etc.)

it is natural to only consider well-typed λ-terms

A possible algebra of types (notation: A, B, C , etc.) is:

A,B,C ::= U | A→ B | A× B | A + B

U is the unit type, from which we can form the type of Booleans B := U + U

Well-typedness of terms is enforced using a typing judgment

Γ ` t : A (“in context Γ, t has type A”)

where

Γ is a typing context, of the form Γ ≡ x1 : A1, . . . , xn : An

t is a term (possibly depending on x1, . . . , xn)
A is a type

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The function type A→ B

A→ B is the type of functions from A to B

Construction: λx . s

Destruction: t u

(λ-abstraction)

(application)

Computation:

(λx . s) u �� s[x := u] (β-reduction)

Typing rules:

Γ, x : A ` s : B

Γ ` λx . s : A→ B

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The Cartesian product A× B

A× B is the type of pairs (u, v), where u : A and v : B

Construction: (u, v)

Destruction: let (x , y) = t in s

(ordered pair)

(“let” for pairs)

Computation:

let (x , y) = (u, v) in s �� s[x := u, y := v]

Typing rules:

Γ ` u : A Γ ` v : B
Γ ` (u, v) : A× B

Γ ` t : A× B Γ, x : A, y : B ` s : C

Γ ` let (x , y) = t in s : C

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The direct sum A+ B

A + B is the direct sum (disjoint union) of types A and B

Construction: inl(u), inr(v)

Destruction: match t {inl(x) 7→ s1 | inr(y) 7→ s2}

Computation:

match inl(u) {inl(x) 7→ s1 | inr(y) 7→ s2} �� s1[x := u]

match inr(v) {inl(x) 7→ s1 | inr(y) 7→ s2} �� s2[y := v]

Typing rules:

Γ ` u : A
Γ ` inl(u) : A + B

Γ ` v : B
Γ ` inr(v) : A + B

Γ ` t : A + B Γ, x : A ` s1 : C Γ, y : B ` s2 : C

Γ ` match t {inl(x) 7→ s1 | inr(y) 7→ s2} : C

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The unit type U

U is the singleton type (inhabited by a dummy value)

Construction: ∗
Destruction: t; s

(dummy value)

(sequence)

Computation: ∗; s �� s

Typing rules:

Γ ` ∗ : U
Γ ` t : U Γ ` s : C

Γ ` t; s : C

Combining U with +, we define the type of Booleans:

B := U + U
tt := inl(∗)
ff := inr(∗)

if t {s1 | s2} := match t {inl(x) 7→ x ; s1 | inr(y) 7→ y ; s2}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The simply-typed λ-calculus

Equipped with a type system such as the one presented above, the
λ-calculus enjoys excellent properties:

Computation is ultimately deterministic: the computed value does
not depend on evaluation strategy (already holds in the untyped case)

Types are preserved throughout computations

All well-typed computations terminate

The simply-typed λ-calculus has also good semantics:

set-theoretic semantics, denotational semantics,
categorical semantics, realizability semantics (cf later)

Strong relationship with logic:

The Curry-Howard correspondence

t is a program of type A ≡ t is a proof of formula A

A→ B, A× B, A + B ≡ A⇒ B, A ∧ B, A ∨ B

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Plan

1 Introduction

2 The lambda-calculus

3 Adding linear combinations

4 A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Aim of the calculus

Intuitions: Terms of the simply-typed λ-calculus represent
classical programs computing classical values

We now want to represent

superposition of values
classical programs computing superposition of values
superposition of programs computing superposition of values

For that, we extend the λ-calculus with linear combinations

s, t ::= x | λx . t | s t | · · · | ~0 | t + u | α · t

Beware!

λx .
(

1√
2
· tt + 1√

2
· ff
)
6= 1√

2
· (λx . tt) + 1√

2
· (λx . ff)

We also would like the type system to capture unitary operators
(in an infinite dimensional space of values)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Linear combinations and non termination

Problem: Linear combinations badly interact with non termination

Let: Yt := (λx . t + xx)(λx . t + xx) (t fixed term)

�� t + Yt

Hence: ~0 = Yt − Yt �� (t + Yt)− Yt = t +~0 = t

⇒ Confluence is lost! (on untyped terms)

Several solutions have been considered to fix this problem:

Restricting the rules of evaluation [Arrighi & Dowek ’08, ’17]

Working with positive coefficients only [Vaux ’09]

Restricting to well-typed terms [Arrighi & D́ıaz-Caro ’11, ’12]

Working with weak linear combinations [Valiron ’13]

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Weak vector spaces (1/2)

Definition (Weak vector space) [Valiron ’13]

A weak C-vector space is a commutative monoid (V ,+,~0) equipped with
a scalar multiplication (·) : C× V → V such that

1 · u = u (α + β) · u = α · u + β · u
α · (β · u) = αβ · u α · (u + v) = α · u + α · v

for all u, v ∈ V , α, β ∈ C

Intuition: Weak vector space = vector space whose additive
structure is not an abelian group, but a commutative monoid

⇒ vectors do not have an opposite, in general

In a weak vector space:

α ·~0 = ~0, but 0 · u 6= ~0 and (−1) · u 6= − u

Note that (−1) · u + u = (−1) · u + 1 · u = (−1 + 1) · u = 0 · u 6= ~0

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Weak vector spaces (2/2)

Weak vector spaces already occur in mathematics!

Observation: If V and W are (ordinary) C-vector spaces, then the set
of all unbounded operators from V to W is a weak C-vector space

The category of weak vector spaces has excellent properties:

It has all limits and all colimits (it is bicomplete)

It is monoidal closed (⊗ a()

It has all free objects: weak linear combinations, a.k.a. distributions
(In a distribution, summands of the form 0 · u do not cancel)

We should not think of algebraic programs as bounded operators,
not even as totally defined operators, but as abstract unbounded
operators (neither total nor continuous)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Plan

1 Introduction

2 The lambda-calculus

3 Adding linear combinations

4 A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Syntax of the calculus

Pure values v ,w ::= x | λx . ~s | ∗
| (v ,w) | inl(v) | inr(v)

Pure terms s, t ::= v | s t | t;~s
| let (x1, x2) = t in ~s
| match t {inl(x1) 7→ ~s1 | inr(x2) 7→ ~s2}

Value distr. ~v , ~w ::= ~0 | v | ~v + ~w | α · ~v (α∈C)

Term distr. ~s, ~t ::= ~0 | t | ~s + ~t | α · ~t (α∈C)

Term/value distributions are endowed with the equational theory of
distributions (summands of the form 0 · t do not cancel)

Syntactic constructs are extended by linearity:

(~v , ~w), ~s ~t are bilinear
inl(~v), inl(~v) are linear in ~v
~t;~s, let (x , y) = ~t in ~s,
match ~t {inl(x) 7→ ~s1 | inr(y) 7→ ~s2} are linear in ~t

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Evaluation

Evaluation is defined from the ‘atomic’ rules

(λx . ~t) v �� ~t [x := v]
∗;~s �� ~s

let (x , y) = (v ,w) in ~s �� ~s [x := v , y := w]
match inl(v) {inl(x) 7→ ~s1 | inr(y) 7→ ~s2} �� ~s1[x := v]
match inr(v) {inl(x) 7→ ~s1 | inr(y) 7→ ~s2} �� ~s2[y := v]

and then extended by linearity (as a relation)

Call-by-basis strategy = call-by-value + all functions are linear

(λx . ~s)~t �� (λx . ~s)
(∑

j βj · vj
)

=
∑

j βj · (λx . ~s) vj

��
∑

j βj · ~s [x := vj]

Theorem: Evaluation is confluent (on untyped terms)

Note: Only holds because we are using distributions (= weak linear combinations)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

The realizability model

The weak vector space ~V of closed value distributions is equipped
with the scalar product 〈~v | ~w〉 and the `2-seminorm ‖~v‖

All constructions are performed in the unit sphere S1 ⊆ ~V

Definition (Types)

A type is a notation A together with a set of unit vectors JAK ⊆ S1

Examples:

The type B (of Booleans) is defined by JBK := {tt, ff}
To each type A, we associate the type]A (unitary span of A)
that is defined by J]AK := span(JAK) ∩ S1

So that we can form the type]B (of unitary Booleans)

To each type A, we associate the realizability predicate

~t
 A :≡ ∃~v ∈ JAK, ~t �� ~v
(~t evaluates to a value distribution of type A)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

A simple algebra of types (1/2)

Types A,B ::= U | [A |]A | A× B
| A + B | A→ B | A⇒ B

Abbrev.: B := U + U, A⊗ B :=](A× B), A⊕ B :=](A + B)

The unit type U is defined by JUK := {∗}

The basis [A of a type A is defined by

J[AK := smallest X ⊆ V s.t. JAK ⊆ span(X)

The unitary span]A of a type A is defined by

J]AK := span(JAK) ∩ S1

The Cartesian product A× B of two types A and B is defined by

JA× BK :=
{

(~v , ~w) : ~v ∈ JAK, ~w ∈ JBK
}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

A simple algebra of types (2/2)

Types A,B ::= U | [A |]A | A× B
| A + B | A→ B | A⇒ B

Abbrev.: B := U + U, A⊗ B :=](A× B), A⊕ B :=](A + B)

The direct sum A + B of two types A and B is defined by

JA + BK :=
{
inl(~v) : ~v ∈ JAK

}
∪
{
inr(~w) : ~w ∈ JBK

}
The pure function space A→ B from A to B is defined by:

JA→ BK :=
{
λx . ~t : ∀~v ∈ JAK, ~t 〈x := ~v 〉
 B

}
The unitary function space A⇒ B from A to B is defined by:

JA⇒ BK :=
{(∑n

i=1 αi · λx . ~ti
)
∈ S1 :

∀~v ∈ JAK,
(∑n

i=1 αi · ~ti 〈x := ~v 〉
)

 B

}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

Properties of the semantic type system

Recall that: ~t
 A :≡ ∃~v ∈ JAK, ~t �� ~v

Theorem (Representation of unitary functions)

Let ~t be a program distribution

1 ~t
]B→]B iff t computes a pure function
that represents a unitary operator from C2 to C2

2 ~t
]B⇒]B iff t computes a unitary function distribution
that represents a unitary operator from C2 to C2

From the realizability relation, we extract a type system based on
typing rules that are correct w.r.t. the semantics

This system is an extension of the simply-typed λ-calculus
(that now represents the classical part of the language)

Moreover, the new type constructs ([A,]A, etc.) allow to capture
linearity constraints, and in particular: unitary functions

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

A possible type system

x : A ` x : A
(Axiom)

Γ ` ~t : A A ≤ A′

Γ ` ~t : A′ (Sub)

Γ, x : A ` ~t : B [Γ ' Γ

Γ ` λx .~t : A→ B
(PureLam)

Γ, x : A ` ~t : B

Γ ` λx .~t : A⇒ B
(UnitLam)

Γ ` ~s : A⇒ B ∆ ` ~t : A

Γ,∆ ` ~s ~t : B
(App)

` ∗ : U
(Void)

Γ ` ~t : U ∆ ` ~s : A

Γ,∆ ` ~t;~s : A
(Seq)

Γ ` ~t :]U ∆ ` ~s :]A

Γ,∆ ` ~t;~s :]A
(SeqSharp)

Γ ` ~v : A ∆ ` ~w : B

Γ,∆ ` (~v , ~w) : A× B
(Pair)

Γ ` ~t : A× B ∆, x : A, y : B ` ~s : C

Γ,∆ ` let (x, y) = ~t in ~s : C
(LetPair)

Γ ` ~t : A⊗ B ∆, x :]A, y :]B ` ~s :]C

Γ,∆ ` let (x, y) = ~t in ~s :]C
(LetTens)

Γ ` ~t : B [A ' A

Γ, x : A ` ~t : B
(Weak)

Γ, x : A, y : A ` ~t : B [A ' A

Γ, x : A ` ~t [y := x] : B
(Contr)

+ many other typing rules / subtyping rules

	Introduction
	The lambda-calculus
	Adding linear combinations
	A unitary linear-algebraic lambda-calculus

