Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(e} 000000000 00000 00000000

Programming unitary operators in a
linear-algebraic typed lambda-calculus

Benoit Valiron, Alejandro Diaz-Caro
Mauricio Guillermo & Alexandre Miquel

l 2

INGENIERIA 4

N

tyind

4d AvVL1NO VA

Yy %ﬁr
UNIVERSIDAD L\
DE LA REPUBLICA

URUGUAY

September 6th, 2018 — 6ta jornada LoCIC — Buenos Aires

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
o0 000000000 00000 00000000

Aim of the work

@ Present the semantics of a linear algebraic lambda-calculus based on
a realizability model that captures a notion of unitarity (¢2-norm)

e lambda-calculus = functional programming (see next slides)

o algebraic = linear combinations of terms
(to represent superpositions of values / superpositions of programs)

o linear = all functions are linear by construction

@ Main novelty: The calculus is designed from a realizability model
(a notion coming from logic, Kleene 1945)

@ A language to represent:
o classical values, classical programs
e superposition of values, superposition of programs
o classical programs computing superposition of values
e superposition of programs computing superposition of values

@ A semantics for quantum programming languages (Quipper)

@ Introduction

© The lambda-calculus

© Adding linear combinations

© A unitary linear-algebraic lambda-calculus

@ Introduction

© The lambda-calculus

© Adding linear combinations

@ A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 0@0000000 00000 00000000

The pure A-calculus (1/2)

Introduced by Alonzo Church (1903-1995) in the 1930s

. to solve Hilbert's Entscheidungsproblem (Decision problem)

@ Minimal functional programming language. Only:

e 3 syntactic constructs (variable, A-abstraction, application)
e 1 computation rule (S-reduction)

@ Actually, the first programming language ever! ...
. if we do not count Charles Babbage's (partial) attempt

Same computation strength as Turing machines

Turing (1912-1954), who had invented his abstract machines
independently, became Church’'s PhD student in Princeton

The A-calculus is now the core of all functional programming
languages: Lisp, Scheme, Erlang, OCaml, Haskell, F#, etc.

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 00@000000 00000 00000000

The pure A-calculus (2/2)

@ Terms of the pure A-calculus (notation: s, t, u, etc.)

s,t,u = X (variable)
| Mx.s (A\-abstraction)
| tu (application)

e Computation rule: (Ax.s)u = s[x:=u] (B-reduction)

@ Examples:
o (Mx.x)y » y
o (Ax.x)(Ax.x) » Ax.x
o (Ax.xx)(Ax.x) = (Ax.x)(Ax.x) = Ax.x
o (Ax.xx)(Ax.xx) = (Ax.xx)(Ax.xx) = ---
o (Az.zz) (M. Ax.f(f(fx))) =
AF £ (F(F (F (F (F (F.(F (F (F (F (F (F (£ (F CF CFCECECEXE29000D)))NN))

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 000800000 00000 00000000

Adding types
@ To avoid undesirable phenomena (self-application, non termination, etc.)
it is natural to only consider well-typed A-terms

@ A possible algebra of types (notation: A, B, C, etc.) is:
ABC == U | A=-B | AxB | A+B J

U is the unit type, from which we can form the type of Booleans B :=U+ U

@ Well-typedness of terms is enforced using a typing judgment

F=t: A (“in context I', t has type A)J
where
o [is a typing context, of the form [= xi:A1,...,xn: Ap
e tis a term (possibly depending on xi, ...,)

o Ais a type

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 000080000 00000 00000000

The function type A — B

@ A — B is the type of functions from A to B

Construction: AX.s (\-abstraction)

Destruction: tu (application)

o Computation:

(Ax.s)u = s[x:=u] (B-reduction)

e Typing rules:

x:AFs: B
N-Xx.s: A= B

r'Ft:A— B fFu:A
l'tu:B

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 000008000 00000 00000000

The Cartesian product A x B

e A x B is the type of pairs (u,v), where u: Aand v : B

Construction: (u,v) (ordered pair)
Destruction: let (x,y)=tins (“let” for pairs)

o Computation:

let (x,y) = (u,v) ins > s[x:=u,y:=V]

@ Typing rules:

FrFu:A lr'Fv:B
M= (u,v): AxB

Fr-t:AxB Nx:Ay:BkFs:C
IFlet (x,y)=tins: C

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 000000800 00000 00000000

The direct sum A+ B

@ A+ Bis the direct sum (disjoint union) of types A and B
Construction: inl(v), inr(v)
Destruction: match t {inl(x) — s; | inr(y) — s}

o Computation:
match inl(u) {inl(x) — s; | inr(y) = s} = si1[x = y]
match inr(v) {inl(x) — s1 | inr(y) = s} == sy =]

@ Typing rules:

FTFu:A l-v:B
I+ inl(u): A+ B It inr(v): A+ B

Frt:A+B M x:AkFs:C MNy:BFs:C
I F match t {inl(x) — s; | inr(y) — s} : C

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 000000080 00000 00000000

The unit type U

e U is the singleton type (inhabited by a dummy value)

Construction: * (dummy value)
Destruction: t;s (sequence)
o Computation: %15 == S

o Typing rules:

r-¢:0 l~s:C
lN-= % :0U lEt;s: C J

@ Combining U with 4, we define the type of Booleans:

B = U+4+U
tt = inl(x)
ff = inr(x)

if t{s1 | 2} = matcht {inl(x) — x;s | inr(y) — y; s}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
oo 00000000e 00000 00000000

The simply-typed A-calculus

o Equipped with a type system such as the one presented above, the
A-calculus enjoys excellent properties:

o Computation is ultimately deterministic: the computed value does
not depend on evaluation strategy (already holds in the untyped case)

e Types are preserved throughout computations

o All well-typed computations terminate

@ The simply-typed A-calculus has also good semantics:

o set-theoretic semantics, denotational semantics,
categorical semantics, realizability semantics (cf later)

@ Strong relationship with logic:

The Curry-Howard correspondence

t is a program of type A = tis a proof of formula A

A—B, AxB, A+B = A=B, AAB, AVB

@ Introduction

9 The lambda-calculus

© Adding linear combinations

@ A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 0@000 00000000

Aim of the calculus

@ Intuitions: Terms of the simply-typed A-calculus represent
classical programs computing classical values

@ We now want to represent

e superposition of values
o classical programs computing superposition of values
e superposition of programs computing superposition of values

@ For that, we extend the A-calculus with linear combinations

s7t:::X|)\x.t\st|-~-|6|t+u|a-tJ

@ Beware!
1 1 1 1

@ We also would like the type system to capture unitary operators
(in an infinite dimensional space of values)

Introduction The lambda-calculus

(oo} 000000000

Linear combinations and non termination

Adding linear combinations A unitary linear-algebraic lambda-calculus
00@00 00000000

@ Problem: Linear combinations badly interact with non termination

Let: Y = (Ax.t+xx)(Ax.t+ xx) (t fixed term)
> t+ Y
Hence: 0 = Yi—VY:i > (t+Y)—Y: = t+0 =t
= Confluence is lost! (on untyped terms)

@ Several solutions have been considered to fix this problem:

o Restricting the rules of evaluation [Arrighi & Dowek '08, '17]
o Working with positive coefficients only [Vaux '09]
o Restricting to well-typed terms [Arrighi & Dfaz-Caro '11, '12]

o Working with weak linear combinations [Valiron "13]

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 0000 00000000

Weak vector spaces (1/2)

Definition (Weak vector space) [Valiron '13]

A weak C-vector space is a commutative monoid (V/, —1—,6) equipped with
a scalar multiplication () : € x V — V such that

l-u = u a+pf)-u = a-u+p-u
a-(B-u) = af-u a-(u+v) = a-uta-v

forall u,ve V, a,BeC

o Intuition: Weak vector space = vector space whose additive
structure is not an abelian group, but a commutative monoid

= vectors do not have an opposite, in general

@ In a weak vector space:
a-0 =0, but 0-u#0 and (-1)-u # —u

Note that (—1)-u+u = (-1)-u+1-u = (-14+1)-u = 0-u # 0

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 [ele]e]e]) 00000000

Weak vector spaces (2/2)

@ Weak vector spaces already occur in mathematics!

Observation: If V and W are (ordinary) C-vector spaces, then the set
of all unbounded operators from V to W is a weak C-vector space

@ The category of weak vector spaces has excellent properties:
o It has all limits and all colimits (it is bicomplete)
e It is monoidal closed (® = —o)

o It has all free objects: weak linear combinations, a.k.a. distributions
(In a distribution, summands of the form 0-u do not cancel)

@ We should not think of algebraic programs as bounded operators,
not even as totally defined operators, but as abstract unbounded
operators (neither total nor continuous)

0 Introduction

9 The lambda-calculus

© Adding linear combinations

© A unitary linear-algebraic lambda-calculus

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

[o]e] 000000000 00000 0@000000

Syntax of the calculus

(a€C)

Pure values v,w = x | Ax.§ | =x
| (v,w) | inl(v) | dinr(v)
Pure terms s,t == v | st | t;§
| let (x1,x)=tin §
| match t {inl(x1) — & | inr(x) — S}
Value distr. v,w == 0 | v | Vv+w | «a-V
Term distr. 5t == 0 | t | §+4Ff | a-F

(ae@)

e Term/value distributions are endowed with the equational theory of
distributions (summands of the form 0 - t do not cancel)

@ Syntactic constructs are extended by linearity:

(V, w), St are bilinear
inl(V), inl(V) are linear in
t; s, let (x,y) =t in 3,

match £ {inl(x) + § | inr(y) — %} are linear in

<i

-+

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 00000 00@00000

Evaluation

@ Evaluation is defined from the ‘atomic’ rules

(Mx.t)v = t[x:=V]
S

let (x,y) =(v,w) in§ > S§[x:=v,y :=w]
match inl(v) {inl(x) — & | inr(y) — %} == Si[x:=v]
match inr(v) {inl(x) — § | inr(y) = S} = Sy =]

and then extended by linearity (as a relation)

o Call-by-basis strategy = call-by-value + all functions are linear

(. F = 0.9 (S80w) = 58 Ox.9)y

- Zjﬂj@'[x = vj]

Theorem: Evaluation is confluent (on untyped terms))

Note: Only holds because we are using distributions (= weak linear combinations)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 00000 00080000

The realizability model

@ The weak vector space V of closed value distributions is equipped
with the scalar product (V | w) and the £;-seminorm ||V]|

@ All constructions are performed in the unit sphere &1 C Vv

Definition (Types)

A type is a notation A together with a set of unit vectors [A] C &1

o Examples:

e The type B (of Booleans) is defined by [B] := {tt, ff}

o To each type A, we associate the type #A (unitary span of A)
that is defined by [#A] := span([A]) N S1

e So that we can form the type B (of unitary Booleans)

@ To each type A, we associate the realizability predicate
th-FA = FVe[A], t=V

(£ evaluates to a value distribution of type A)

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

[e]e] 000000000 00000 0000e000
A simple algebra of types (1/2)
Types AB = U | bA | 4A | AxB

| A+B | A»B | A=B

Abbrev.. B := U+U, A®B = §(AxB), A®B := §(A+B)

@ The unit type U is defined by [U] := {*}
@ The basis bA of a type A is defined by
[PA] := smallest X C V s.t. [A] C span(X)
@ The unitary span §A of a type A is defined by
[tA] = span([A]) N &1

@ The Cartesian product A x B of two types A and B is defined by
[Ax B] = {(\77 w) : Ve[A], we [[B]]}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus

[e]e] 000000000 00000 00000e00
A simple algebra of types (2/2)
Types AB == U | bA | 4A | AxB

| A+B | A>B | A=B

Abbrev.. B := U+U, A®B = §(AxB), A®B := #(A+B)

@ The direct sum A + B of two types A and B is defined by
[A+B] := {inl(V) : Ve [A]} U {inr(W) : w € [B]}
@ The pure function space A — B from A to B is defined by:
[A— B] = {Xx.t : We[A] t(x:=V) I B}
@ The unitary function space A= B from A to B is defined by:

[[A:>B]] = {(Z?Zla;-)\x.f;) €S
we Al (XL i ti(x:=V)) - B}

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 00000 00000080

Properties of the semantic type system

@ Recall that: tIFA = 3IVe[A], t=V

Theorem (Representation of unitary functions)

Let f be a program distribution

Q flI-4B — 4B iff t computes a pure function
that represents a unitary operator from €2 to €2

Q tl-1B =B iff t computes a unitary function distribution
that represents a unitary operator from €2 to €2

@ From the realizability relation, we extract a type system based on
typing rules that are correct w.r.t. the semantics

@ This system is an extension of the simply-typed A-calculus

(that now represents the classical part of the language)

@ Moreover, the new type constructs (bA, £A, etc.) allow to capture
linearity constraints, and in particular: unitary functions

Introduction The lambda-calculus Adding linear combinations A unitary linear-algebraic lambda-calculus
(oo} 000000000 00000 0000000

A possible type system

THFE:A A<A

Axi = Sub
AR ed) e oW
Mx:AFt:B br~T Mx:AFt:B .
—~ (PureLam) ——— — — (UnitLam)
r-Xx.t:A—=B r-Xx.t:A=B
r-5:A=B AFFt:A
= App
NAFSt:B (Aee)
THFE:U AFS:A rEf:jUu AFS:gA
—— (Void) —#_‘S (Seq) =— (SeqSharp)
Eox U MMAFtS:A AFt5: A
o 7 o FrFt:AxB A,x:Ay:BF5:C .
r'Fv:A AFw:B (Pair) - (LetPair)
LAE(V,w):AxB IAF let (x,y)=tins: C
Fr-t:A®B A,x:#A,y:4BF §:4C
x4 3’11 el (LetTens)
M AF let (x,y)=tin§: #C
o) Mx:Ay:A-t:B bA~A
M (Weak) X 4 - (Contr)
Mx:AFt:B Mx:AFtly:=x]: B

+ many other typing rules / subtyping rules

	Introduction
	The lambda-calculus
	Adding linear combinations
	A unitary linear-algebraic lambda-calculus

