Quantum Algorithms for
Multiobjective Optimization

Marcos Villagra

Nucleo de Investigacion y Desarrollo Tecnolégico (NIDTEC)
Facultad Politécnica
Universidad Nacional de Asuncion



Nucleo de Investigacion y Desarrollo
Tecnologico (NIDTEC)

Computational Optimization - Biomaterials
- Applied Mathematics and Scientific Computation = - Software Engineering
Bioinformatics - Theoretical Computer Science

2



Theoretical Computer Science Group
at NIDTEC

Professors Research
- Eduardo Canale (UNA/Udelar) - Algorithms
- Marcos Villagra - Graph theory

- Computational Complexity

- uantum computin
Doctor students Q P &

- Cristhian Martinez (algebraic complexity)
- Pedro Villagra (algebraic complexity)

Master students
- Marcos lbarra (quantum computing)

- Fabricio Mendoza (espectral algorithms) r 1
- Sergio Mercado (espectral algorithms) 1

=]

Undergrad students
- Tadashi Akagi (tilings and graph theory)



This talk is about...

How to solve Multiobjective Optimization Problems
using a Quantum Computer
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Why?

In the early days it was very difficult to design quantum algorithms for optimization
problems for most quantum computing models.

There were, however, papers with empirical results, like

- Crhistoph Diirr, Peter Hgyer. A quantum algorithm for finding the minimum.
arXiv:quant-ph/9607014 (1999)

- Baritompa et al. Grover’s quantum algorithm applied to global optimization.
SIAM Journal on Optimization 15(4), 2005.

Quantum adiabatic computing [Farhi et al. 2000], however, is made for optmization
problems.



Why? (cont’d)

More recently,

1- A. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for solving linear systems of
equations. arXiv:0811.3171.

2- F. Brandao, K. Svore. Quantum speed-ups for semidefinite programming.
arXiv:1609.05537.

3- I. Kerenidis, A. Prakash. A quantum interior point method for LPs and DSPs.
arXiv:1808.09266



Quantum Optimization

Applications in:

1- Big data.

2- Artificial Intelligence
3- Machine Learning
4- Engineering

Machine
Learning

Anything that needs to be optimized!

But what about Multiobjective Optimization Problems?
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Multiobjective Optimization

f, f,
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Pareto-optimal solutions \

Optimal solution of f, Optimal solution of f,



Multiobjective Optimization (cont’d)
f2

X ‘_____________

Given solutions x and y x <yiff fi(x) < fi(y) and f,(x) < f,(y)

The set of Pareto-optimal solutions is the set of minimal points.



Multiobjective Combinatorial
Optimization or MCO

The domain of each objective function is finite.

Both objective functions above take values only on a finite number of points.



Multiobjective Combinatorial
Optimization or MCO (cont’d)

An MCO with d objectives

Objective function f(x) = (fl (x),-- ,fd (x))

Problem: Find a non-trivial Pareto-optimal solution

The optimal solution of each f; is a trivial Pareto-optimal solution

Each trivial solution can be found by optimizing each objective individually!



Multiobjective Combinatorial
Optimization or MCO (cont’d)

Some definitions

Equivalent solutions: x and y are equivalent iff (f;(x),....f,(x))=(f,(y),-....f4(v))

Collision-free MCO: for each f; and each pair of solutions x and y, it holds that
| f{x)—=f(y) | >A for some positive real A.



Linearization of an MCO

Given an objective function J)=(f,(x),+, f,(x))

A linearization of f is a linear combination between each fl such that
<f(X),W> =w fi(xX)+-+w,f,(x)

where w+......+w, =1 and each w; €[0,1].

Lemma. For each w there exists x such that x is Pareto-optimal and {w,f(x)) is minimum.

A solution x is a supported solution if x is @ minimum of (w,f(x)) for some w;

otherwise, x is non-supported.



Classical Methods for Multiobjective
Optimization

1- Heuristics

» Designed for a specific problem.

» Greedy algorithms, local optimizers, etc.
2- Metaheuristics

» Problem-independent.

» Evolutionary algorithms, ant colony optimization, etc.
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Grover’s Search Algorithm

Grover’s algorithm finds K marked items out of a set of N items in time 0(\/N/K)

Geometrically, this corresponds to a rotation

|zo)

1G"|C)

ris the number of times the Grover operator G is used.



Grover’s Adaptive Search (GAS)*

1. Randomly select a threshold y.

2. Forr=1,2,3,....
I.  Grover search with r rotations with oracle O,.
ii. If asolutionis found, update thresholdy.

Let O,(x)= Lty

0 otherwise

Durr and Hgyer's heuristic for the selecting the rotation number

1. Let k=1.

2. Repeat
i.  Randomly choose r, from [k].
ii. Grover search with r, rotations.

iii. If a solution is found, update threshold y
and set k=1.

iv. Else, let k=min{Ak,vN}.

Let [k]={0,1,....,k-1}

* Baritompa, Bulger, Wood. Grover’s quantum algorithm applied to global optimization.
SIAM Journal on Optimization 15(4):1170-1184, 2005.



Multiobjective Grover Adaptive Search
(MOGAS)

GAS with Durr and Hgyer's can be naturally extended to multiobjective problem:s.

We studied two types of oracles:

—

1 If xdominatesy 1 If xdominates or is uncomparable to y

hl(x)= hz(x)= —
0 otherwise 0 otherwise

=

Remember a current known set of non-dominated solutions Y



Initial Results

€ We compared MOGAS against NSGA-II.
@ Run tests on structured instances and random instances of bi-objective problems.

€ We computed the hypervolume and the number of objective functions evaluations.

is @ measure of how close the set of non-dominated solutions are
to the real set of Pareto-optimal solutions.

All tests run with 10 qubits.




Initial Results (cont’d)

Random Instance

99 08

MOGAS-h; ——
MOGAS-hy  ====-=
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Initial Results (cont’d)

Structured Instance

hvl 7ZDT3
7]
60 57
50
MOGAS-h; —
MOGAS-hy  ====-=
NSGA-II (pop=50)
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Work to be done

@ Increase the number of qubits.
@ Test more types of oracles.
€ Try more heuristics.

€ Prove convergence.

Results in Proceedings of FedCSIS 2017 — 10th Workshop on Computational Optimization
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Eigenstates and Energies

Schrodinger’s equation dlw(t» 1/1(1)>

Eigenvectors (eigenstates) |1/JJ> Hamiltonian (Hermitian matrix)

Eigenvalues (energies) Ej

Ground state: eigenstate with lowest energy.



Optimization with Hamiltonians
Given an objective function f(x)

- f(x)

J(x,)

‘ x> are eigenstates

- Problem: find a minimal eigenstate.
f(X) are eigenvalues



Adiabatic Evolution

i O = H (1) lp(t))

Adiabatic Theorem: [Born and Fock 1928]

H(0) /\/\/\H(T)

Start in |1/J(O)> ground state of H (0)

Q Finisht at |l/J(T)> ground state of H(T)

T >> — {IW)}Q where  y(t)= El(l‘) - EO (1) eigenvalue gap




The Quantum Adiabatic Algorithm

1. Construct a Hamiltonian H, encoding the optimization problem.
2. Construct a Hamiltonian H, with known ground state.
3. With adiabatic evolution, slowly change H, into H,.

H(s)=(-s)H,+sH,

4. Measure the results.

H(0)=H, H(T)=H,



Quantum Annealers

1. Implementations of the quantum adiabatic paradigm, but they are
only good for optimization problems.

2. Some companies claim they have 1000 qubits quantum annealers.

3. They are promising 2000 qubits by this year!

This being true or not, it is still and interesting model of computation.



Main Contribution of this Work

Theorem.

Given any MCO that is collision-free. If there are no equivalent solutions,
then there exists a linearization such that the quantum adiabatic algorithm can find

a Pareto-optimal solution in finite time.

If the linearization is chosen appropriately, then the algorithm can find all supported

solutions.

Two structural properties of MCOs are required:

(1) Collision-freeness Otherwise we cannot guarantee
(2) Absence of equivalent solutions convergence in finite time



Main Contribution of this Work (cont’d)

The proof relies on understanding the eigenvalues of the final Hamiltonian H; encoding
a linearization of an MCO.

The Hamiltonian of an MCO is H le 4+ W dHf
d

where each Hf encodes objective function f; :
i



Main Contribution of this Work (cont’d)

Final Hamiltonian H WIH 4.+ WdHf
d

f,

Choosing w selects the initial point.

o
nis # bits required to
| / encode any solution
/ poly(n)
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Main Contribution of this Work (cont’d)

The proof relies on understanding the eigenvalues of the final Hamiltonian H; encoding
a linearization of an MCO.

The Hamiltonian of an MCO is H le 4+ W dHf
d

where each Hf encodes objective function f; :
i

The linearization that is chosen must give a nondegenerate ground state.

b a unique minimum energy

If the ground state is degenerate, then we can always chose another linearization.

In both cases, we always obtain the same Pareto-optimal solution.



Main Contribution of this Work (cont’d)

It suffices to prove that the final Hamiltonian H, has a non-degenerate ground-state.

H=wH,+--+w H,

The initial Hamiltonian H, is already chosen with a non-degenerate ground-state.

If the total Hamiltonian is non-degenerate, we cannot use the quantum adiabatic theorem.

We rely on the quantum adiabatic theorem of Ambainis and Regev [arXiv:quant-ph/0411152]

e 3 3
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Eigenvalue Gap of the Two-Parabolas
Problem

\ l
|

Pareto-optimal solutions H (s)=(1-s)H, +sH,

T>>—1 where y(t) = E1 (1)- EO (1) eigenvalue gap

min, {y(t)}*




Eigenvalue Gap of the Two-Parabolas
Problem (cont’d)

Numerical experitments with 7 qubits.

Eigenvalue Gap

—e— smallest eigenvalue o,

—a— second smallest eigenvalue a,,

n - & A & Bl




Eigenvalue Gap of the Two-Parabolas
Problem (cont’d)

Numerical experitments with 7 qubits.

Logplot of the Eigenvalue Gap




Open Problems

€ New adiabatic algorithm capable of finding ALL Pareto-optimal
solutions.

€ Mechanism for dealing with equivalent solutions.

@ Construct an explicit natural MCO instance with polynomial-time
convergence.

Please check the full-version at arXiv:1605.03152

for a list of open problems
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Concluding Remarks

We showed initial empiricial results that suggests an “advantage” of an adaptive
strategy. However, more test with more qubits are necessary.

We showed that the adiabatic algorithms can be used to solve MCOs. In that case,
we identified two structural properties that any MCO must fulfill:

a) collision-freeness, and
b) no equivalent solutions.

First guantum algorithm for multiobjective optimization. It can be implemented in
“real-world” quantum annealers.



