
Quantum	Algorithms	for	
Mul2objec2ve	Op2miza2on	

Marcos	Villagra	
	

Núcleo	de	Inves2gación	y	Desarrollo	Tecnológico	(NIDTEC)	
Facultad	Politécnica	

Universidad	Nacional	de	Asunción	



Núcleo	de	Inves2gación	y	Desarrollo	
Tecnológico	(NIDTEC)	

-  Computa(onal	Op(miza(on	
-  Applied	Mathema(cs	and	Scien(fic	Computa(on	
-  Bioinforma(cs	

-  Biomaterials	
-  So;ware	Engineering	
-  Theore(cal	Computer	Science	

2	



Theore2cal	Computer	Science	Group	
at	NIDTEC	

Professors	
-  Eduardo	Canale	(UNA/Udelar)	
-  Marcos	Villagra	

Doctor	students	
-  Cristhian	MarHnez	(algebraic	complexity)	
-  Pedro	Villagra	(algebraic	complexity)	

Master	students	
-  Marcos	Ibarra	(quantum	compu(ng)	
-  Fabricio	Mendoza	(espectral	algorithms)	
-  Sergio	Mercado	(espectral	algorithms)	

Undergrad	students	
-  Tadashi	Akagi	((lings	and	graph	theory)	

3	

Research	
-  Algorithms	
-  Graph	theory	
-  Computa(onal	Complexity	
-  Quantum	compu(ng	



This	talk	is	about…	

How	to	solve	Mul2objec2ve	Op2miza2on	Problems	
using	a	Quantum	Computer	



Why?	
In	the	early	days	it	was	very	difficult	to	design	quantum	algorithms	for	op2miza2on	
problems	for	most	quantum	compu2ng	models.	
	
There	were,	however,	papers	with	empirical	results,	like	
	
-	Crhistoph	Dürr,	Peter	Høyer.	A	quantum	algorithm	for	finding	the	minimum.	

	arXiv:quant-ph/9607014	(1999)	
-	Baritompa	et	al.	Grover’s	quantum	algorithm	applied	to	global	op(miza(on.	

	SIAM	Journal	on	Op2miza2on	15(4),	2005.	
	
	

Quantum	adiaba(c	compu(ng	[Farhi	et	al.	2000],	however,	is	made	for	optmiza2on	
problems.	



Why?	(cont’d)	
More	recently,	
	
1-	A.	Harrow,	A.	Hassidim,	S.	Lloyd.	Quantum	algorithm	for	solving	linear	systems	of	
equa(ons.	arXiv:0811.3171.	
	
2-	F.	Brandao,	K.	Svore.	Quantum	speed-ups	for	semidefinite	programming.	
arXiv:1609.05537.	
	
3-	I.	Kerenidis,	A.	Prakash.	A	quantum	interior	point	method	for	LPs	and	DSPs.	
arXiv:1808.09266	
	
	



Quantum	Op2miza2on	

But	what	about	Mul(objec(ve	Op(miza(on	Problems?	

Applica2ons	in:	
	
1-	Big	data.	
2-	Ar2ficial	Intelligence	
3-	Machine	Learning	
4-	Engineering	

Anything	that	needs	to	be	op(mized!	
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Mul2objec2ve	Op2miza2on	
f1	 f2	

x0	 x1	

Op2mal	solu2on	of	f1	 Op2mal	solu2on	of	f2	

Pareto-op(mal	solu(ons	



Mul2objec2ve	Op2miza2on	(cont’d)	

f1	

f2	

x	≺	y	iff	f1(x)	≤	f1(y)	and	f2(x)	≤	f2(y)	Given	solu2ons	x	and	y	

x	
x’	

x	and	x’	are	uncomparable	

The	set	of	Pareto-op2mal	solu2ons	is	the	set	of	minimal	points.	



Mul2objec2ve	Combinatorial	
Op2miza2on	or	MCO	

The	domain	of	each	objec2ve	func2on	is	finite.	

Both	objec2ve	func2ons	above	take	values	only	on	a	finite	number	of	points.	



Mul2objec2ve	Combinatorial	
Op2miza2on	or	MCO	(cont’d)	

Objec(ve	func(on						

An	MCO	with	d	objec(ves	

Problem:	Find	a	non-trivial	Pareto-op2mal	solu2on	

The	op2mal	solu2on	of	each	fi	is	a	trivial	Pareto-op2mal	solu2on	

Each	trivial	solu2on	can	be	found	by	op2mizing	each	objec2ve	individually!	

f (x) = ( f1(x),!, fd (x))



Mul2objec2ve	Combinatorial	
Op2miza2on	or	MCO	(cont’d)	

Some	defini(ons	

Equivalent	solu(ons:			x	and	y	are	equivalent	iff			(	f1(x),….,fd(x)	)	=	(	f1(y),.....,fd(y)	)	

Collision-free	MCO:		for	each	fi	and	each	pair	of	solu2ons	x	and	y,	it	holds	that	
																																					|	fi(x)	–	fi(y)	|	>	λ			for	some	posi2ve	real	λ.	



Lineariza2on	of	an	MCO	

Lemma.	For	each	w	there	exists	x	such	that	x	is	Pareto-op2mal	and	⟨w,f(x)⟩	is	minimum.	

A	solu2on	x	is	a	supported	solu(on	if	x	is	a	minimum	of	⟨w,f(x)⟩	for	some	w;	

otherwise,	x	is	non-supported.	

Given	an	objec(ve	func(on						 f (x) = ( f1(x),!, fd (x))

where	w1+…...+wd	=1	and	each	wi	∊	[0,1].	

A	lineariza(on	of							is	a	linear	combina2on	between	each								such	that	fif

f (x),w = w1 f1(x)+!+wd fd (x)



Classical	Methods	for	Mul2objec2ve	
Op2miza2on	

1-	Heuris(cs	
	
Ø  Designed	for	a	specific	problem.	

Ø  Greedy	algorithms,	local	op2mizers,	etc.	
	
2-	Metaheuris(cs	
	
Ø  Problem-independent.	

	
Ø  Evolu2onary	algorithms,	ant	colony	op2miza2on,	etc.	
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Grover’s	Search	Algorithm	

Grover’s	algorithm	finds	K	marked	items	out	of	a	set	of	N	items	in	2me		 O N /K( )

Geometrically,	this	corresponds	to	a	rota2on	

r	is	the	number	of	2mes	the	Grover	operator	G	is	used.	



Grover’s	Adap2ve	Search	(GAS)*	

*	Baritompa,	Bulger,	Wood.	Grover’s	quantum	algorithm	applied	to	global	op2miza2on.	
SIAM	Journal	on	Op2miza2on	15(4):1170-1184,	2005.	

1.  Randomly	select	a	threshold	y.	
2.  For	r=1,2,3,….	

i.  Grover	search	with	r	rota2ons	with	oracle	Oy.	
ii.  If	a	solu2on	is	found,	update	threshold	y.	

Let	Oy(x)=	
1						If	f(x)<y	
	
0						otherwise	

Dürr	and	Høyer's	heuris2c	for	the	selec2ng	the	rota2on	number	

Let	[k]={0,1,….,k-1}	 1.  Let	k=1.	
2.  Repeat	

i.  Randomly	choose	rk	from	[k].	
ii.  Grover	search	with	rk	rota2ons.	
iii.  If	a	solu2on	is	found,	update	threshold	y	

and	set	k=1.	
iv.  Else,	let	k=min{λk,√N}.	



Mul2objec2ve	Grover	Adap2ve	Search	
(MOGAS)	

GAS	with	Dürr	and	Høyer's	can	be	naturally	extended	to	mul2objec2ve	problems.	

We	studied	two	types	of	oracles:	

h1(x)=	
1			If	x	dominates	y	
	
0			otherwise	

h2(x)=	
1			If	x	dominates	or	is	uncomparable	to	y	
	
0			otherwise	

Remember	a	current	known	set	of	non-dominated	solu(ons	Y	



Ini2al	Results	

u We	compared	MOGAS	against	NSGA-II.	

u Run	tests	on	structured	instances	and	random	instances	of	bi-objec2ve	problems.	

u We	computed	the	hypervolume	and	the	number	of	objec2ve	func2ons	evalua2ons.	

is	a	measure	of	how	close	the	set	of	non-dominated	solu2ons	are	
to	the	real	set	of	Pareto-op2mal	solu2ons.	

All	tests	run	with	10	qubits.	



Ini2al	Results	(cont’d)	

Random	Instance	



Ini2al	Results	(cont’d)	

Structured	Instance	



Work	to	be	done	

u  Increase	the	number	of	qubits.	

u Test	more	types	of	oracles.	

u Try	more	heuris2cs.	

u Prove	convergence.	

Results	in	Proceedings	of	FedCSIS	2017	–	10th	Workshop	on	ComputaVonal	OpVmizaVon		
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Eigenstates	and	Energies	

i! d|ψ (t )
dt = H (t) |ψ(t)Schrodinger’s	equa(on	

Hamiltonian	(Hermi2an	matrix)	Eigenvectors	(eigenstates)	

Eigenvalues	(energies)	

jψ|

jE

Ground	state:	eigenstate	with	lowest	energy.	



Op2miza2on	with	Hamiltonians	

H =

f (x1)
.
.
.

f (xn )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Given	an	objec2ve	func2on	f(x)	

〉x| are	eigenstates	

f (x) are	eigenvalues	
Problem:	find	a	minimal	eigenstate.	



Adiaba2c	Evolu2on	
i! d|ψ (t )

dt = H (t) |ψ(t)

Adiaba(c	Theorem:			[Born	and	Fock	1928]	

H (0) H (T )

Start	in																							ground	state	of	|ψ(0)

Finisht	at																							ground	state	of	|ψ(T )

T >> 1
mint {γ (t )}2      where      γ (t) = E1(t)−E0 (t)

H (0)

H (T )

eigenvalue	gap	



The	Quantum	Adiaba2c	Algorithm	

1.  Construct	a	Hamiltonian	H1	encoding	the	op2miza2on	problem.	

2.  Construct	a	Hamiltonian	H0	with	known	ground	state.	

3.  With	adiaba2c	evolu2on,	slowly	change	H0	into	H1.	

4.  Measure	the	results.	

H (0) = H0 H (T ) = H1

H (s) = (1− s)H0 + sH1



Quantum	Annealers	

1.  Implementa2ons	of	the	quantum	adiaba2c	paradigm,	but	they	are	
	
only	good	for	op2miza2on	problems.	

2.  Some	companies	claim	they	have	1000	qubits	quantum	annealers.	

3.  They	are	promising	2000	qubits	by	this	year!	

This	being	true	or	not,	it	is	s2ll	and	interes2ng	model	of	computa2on.	



Main	Contribu2on	of	this	Work	

Theorem.	
	
Given	any	MCO	that	is	collision-free.	If	there	are	no	equivalent	solu(ons,	
then	there	exists	a	lineariza2on	such	that	the	quantum	adiaba2c	algorithm	can	find	
a	Pareto-op2mal	solu2on	in	finite	2me.	
	
If	the	lineariza2on	is	chosen	appropriately,	then	the	algorithm	can	find	all	supported	

solu2ons.	

Two	structural	proper2es	of	MCOs	are	required:	
	

	(1)	Collision-freeness	
	(2)	Absence	of	equivalent	solu2ons	

Otherwise	we	cannot	guarantee	
convergence	in	finite	2me	



Main	Contribu2on	of	this	Work	(cont’d)	
The	proof	relies	on	understanding	the	eigenvalues	of	the	final	Hamiltonian	H1	encoding	
a	lineariza2on	of	an	MCO.	

H1 = w1H f1
+!+w dH fd

The	Hamiltonian	of	an	MCO	is	
	
	
where	each													encodes	objec2ve	func2on												.	H fi

fi



f1	

f2	

Main	Contribu2on	of	this	Work	(cont’d)	
H1 = w1H f1

+!+w dH fd

Choosing	w	selects	the	ini2al	point.	

1
poly(n)

33	

Final	Hamiltonian	

n	is	#	bits	required	to	
encode	any	solu2on	



Main	Contribu2on	of	this	Work	(cont’d)	
The	proof	relies	on	understanding	the	eigenvalues	of	the	final	Hamiltonian	H1	encoding	
a	lineariza2on	of	an	MCO.	

The	lineariza2on	that	is	chosen	must	give	a	nondegenerate	ground	state.	

a	unique	minimum	energy	

If	the	ground	state	is	degenerate,	then	we	can	always	chose	another	lineariza2on.	

In	both	cases,	we	always	obtain	the	same	Pareto-op(mal	solu(on.	

H1 = w1H f1
+!+w dH fd

The	Hamiltonian	of	an	MCO	is	
	
	
where	each													encodes	objec2ve	func2on												.	H fi

fi



Main	Contribu2on	of	this	Work	(cont’d)	
It	suffices	to	prove	that	the	final	Hamiltonian	H1	has	a	non-degenerate	ground-state.	

H1 = w1H f1
+!+w dH fd

The	ini2al	Hamiltonian	H0	is	already	chosen	with	a	non-degenerate	ground-state.	

If	the	total	Hamiltonian	is	non-degenerate,	we	cannot	use	the	quantum	adiaba2c	theorem.	

We	rely	on	the	quantum	adiaba(c	theorem	of	Ambainis	and	Regev	[arXiv:quant-ph/0411152]	

T ≥ 10
5

δ 2
max

H ' 3

λ 4
,
H ' ⋅ H ''

λ3
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Approx.	factor	 Eigenvalue	gap	



Eigenvalue	Gap	of	the	Two-Parabolas	
Problem	

Pareto-op(mal	solu(ons	

T >> 1
mint {γ (t )}2      where      γ (t) = E1(t)−E0 (t) eigenvalue	gap	

Hw (s) = (1− s)H0 + sH1



Eigenvalue	Gap	of	the	Two-Parabolas	
Problem	(cont’d)	

Numerical	experitments	with	7	qubits.	

Eigenvalue	Gap	



Eigenvalue	Gap	of	the	Two-Parabolas	
Problem	(cont’d)	

Numerical	experitments	with	7	qubits.	

Logplot	of	the	Eigenvalue	Gap	



Open	Problems	

u New	adiaba2c	algorithm	capable	of	finding	ALL	Pareto-op2mal	
solu2ons.	

u Mechanism	for	dealing	with	equivalent	solu2ons.	

u Construct	an	explicit	natural	MCO	instance	with	polynomial-2me	
convergence.		

Please	check	the	full-version	at	arXiv:1605.03152	

for	a	list	of	open	problems	
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Concluding	Remarks	

1.  We	showed	ini2al	empiricial	results	that	suggests	an	“advantage”	of	an	adap2ve	
strategy.	However,	more	test	with	more	qubits	are	necessary.	
	

2.  We	showed	that	the	adiaba2c	algorithms	can	be	used	to	solve	MCOs.	In	that	case,	
we	iden2fied	two	structural	proper2es	that	any	MCO	must	fulfill:	

a)  collision-freeness,	and	
b)  no	equivalent	solu2ons.	

3.  First	quantum	algorithm	for	mul2objec2ve	op2miza2on.	It	can	be	implemented	in	
“real-world”	quantum	annealers.	

Thanks	for	your	aeen(on!	


